Composição fitoquímica dos óleos essenciais de folhas de *Lippia alba* (Mill.) N.E.Br. em diferentes épocas de colheita e partes do ramo

Castro, D. M.¹; **Ming, L. C.**²; **Marques, M. O.M.**²

¹ Departamento de Produção Vegetal- FCA/UNESP/Botucatu- SP. ² Centro de Genética, Biologia Molecular e Fitoquímica do Instituto Agronômico de Campinas (CGBMFq- IAC).

RESUMO: O presente trabalho teve como objetivo determinar a composição dos óleos essenciais em diferentes épocas de colheita e partes do ramo de *Lippia alba*. Os parâmetros considerados foram variação sazonal (primavera, verão, outono e inverno) sobre as diferentes regiões do ramo (apical, mediana e basal), sendo comparados através de testes fitoquímicos. As extrações dos óleos foram feitas através de hidrostilações, em aparelho de Clevenger, da massa fresca. Os óleos essenciais obtidos foram analisados através de CG/EM (Shimadzu, QP-5000) e os constituintes químicos identificados pela comparação dos seus espectros de massa com o banco de dados do sistema CG/EM (Nist 69, Lib), literatura e índice de retenção de Kovats. Através dos testes fitoquímicos, da massa fresca, foram obtidas as porcentagens dos constituintes químicos do óleo essencial sendo os principais constituintes citral (neral e geranial), mirceno, β-cariofileno e β-elemeno independentemente da época e região do ram colhida, enquanto que a carvona somente foi encontrada no verão/99 e na primavera/98 nas regiões apical e basal, respectivamente.

Palavras-chave: *Lippia alba*, óleos voláteis, componentes e plantas.

ABSTRACT: Chemical composition of the essential oils of *Lippia alba*(Mill.) N.E.Br. at different times of harvest and different parts of branches. This work aimed to determine the best harvest time for biomass production, yield and essential oil composition considering the seasonal variation (spring, summer, autumn and winter) on different plant parts (apical, mediana and basal). Essential oils were extracted by hydro-distillation with a Clevenger apparatus for both fresh and dry mass obtained in field and lab conditions respectively. The extracted essential oils were analyzed by GS/MS (Shimadzu, QP-5000). The chemical components were identified by comparing their mass spectra to the patterns filed in the MS computer memory (Wiley,139,Lib.) to the literature references, and by co-injection with authentic standards. Applying phyto-chemical tests on fresh and dry mass, the chemical component percentages of essential oils were calculated and identified as follows: citral (neral and geranial), myrcene, carophylene and elemene.

Key words: *Lippia alba*, volatile oil, plant components.

INTRODUÇÃO

Lippia alba (Mill.) N.E.Br. (Verbenaceae) está entre as principais plantas medicinais mais usadas pela população brasileira. Conhecida popularmente como erv a cidreira brasileira ou falsa melissa, é usada principalmente na forma de chá das folhas, por suas atividades antiespasmodicas, sedativas, estomáquicas, entre outras, conforme levantamentos etnobotânicos (Ming,1992).

Verbenaceae é uma das famílias de dicotiledôneas de hábito extremamente diversificado, possuindo 75 géneros e 2800 espécies, distribuídas quase que exclusivamente nas regiões tropicais e subtropicais (Barroso et al. 1978). O género Lippia Houst. (Verbenaceae Juss.) compreende cerca de 200 espécies que podem ser herbáceas, subarbustivas e até árvores de pequeno porte, sendo todas aromáticas (Terblanché,1996).

Os estudos dos constituintes do óleo essencial de *L. alba* foram revisados por Ming (1992), o qual relata que os resultados nem sempre são uniformes, devido ao efeito dos fatores ambientais e da metodologia utilizada pelos diferentes autores, bem como, à variabilidade genética dessas plantas. Em geral, segundo o mesmo autor, os principais componentes do óleo essencial desta espécie são terpineno, citral (neral e geranial), β-cariofileno, β-mirceno, p-cimeno, undeconanoa, cadineno e α-humuleno.

Gomes (1993) constatou, através das análises de cromatografia gasosa, que o óleo essencial de *Lippia alba*, cultivada no Paraná, apresenta na sua composição química as seguintes proporções: γ-terpineno (46,71%); p-cimeno (8,65%); β-cariofileno (7,23%); mirceno (1,32%); geranial (0,69%) e neral (0,39%).

O β-cariofileno seguido por geranial foram os principais constituintes do óleo essencial de *L. alba*, cultivada no Jardim Botânico do Rio de Janeiro (Correa, 1992). O citral (geranial e neral) foi também verificado por Silva (1979) no óleo essencial desta mesma espécie, coletada em São Paulo. Craveiro et al. (1981b e 1987), afirmam que foi mantida a mesma composição básica dos constituintes do óleo essencial (citral, terpineno e cariofileno) de plantas de *L. alba*, procedentes do...
Maranhão e Ceará, variando, no entanto, a proporção relativa dos componentes. Portanto, os constituintes dos óleos essenciais de *Lippia alba* se alteram dependendo do local de cultivo (Paraná, Rio de Janeiro, São Paulo, Maranhão e Ceará).

Hose *et al.* (1997), analisando a idade das folhas de *Melissa officinalis* L. em relação à composição do óleo essencial, constataram grandes mudanças quantitativas entre as folhas da região apical e basal da planta, como por exemplo, o citral da região apical comparado com a basal passou de 37,2% para 0,5%, enquanto que, o inverso ocorreu com o citronelal passando de 11,1% para 52,4%.

Embora existam informações sobre a composição dos óleos essenciais, pouco se conhece sobre a influência da sazonalidade e das diferentes regiões do ramo de *Lippia alba*; portanto, o presente trabalho teve como objetivo estabelecer a composição química dos óleos essenciais de *L. alba*, em diferentes épocas de colheita e regiões do ramo.

MATERIAL E MÉTODO

Obtenção do material vegetal e cultivo em campo

Foram utilizadas mudas obtidas por estiagem, a partir de matrizes existentes na Fazenda Experimental São Manuel, pertencente à F.C.A./UNESP - Botucatu.

Cada estaca de aproximadamente 0,20m foi colocada para enraizar em sacos de plástico preto de 8X25cm, com substrato homogêneo rico em matéria orgânica, composto por solo e esterco de gado (4:1). As mudas permaneceram em casa de vegetação, com umidade controlada e temperaturas próximas a 23°C. Essas estacas, após 60 dias foram transplantadas para o campo, com espaçamento de 1,00 m entre linhas e 0,70 m entre plantas.

As colheitas das folhas foram feitas manualmente e em diferentes regiões dos ramos (apical, mediana e basal), no final de cada estação (primavera/98, verão/98 e 99, outono/98 e 99 e inverno/98), tendo cada tratamento seis repetições. Cada repetição ocupou uma área de 30 m², contendo um total de 72 plantas, destas apenas 42 foram consideradas plantas úteis, sendo o restante a bordadura do experimento. A área total deste experimento foi de 300 m², incluindo os carradores a as seis repetições.

Para as colheitas de folhas de diferentes regiões dos ramos, foram consideradas como apical a porção do ramo que inclui o último nó e os quatro nós subsequentes contendo as folhas mais novas e presença de botões florais; mediana do sexto ao décimo nó, com presença de flores abertas e folhas desenvolvidas e como basal, que inclui o 11º nó e todos os outros abaixo apresentando folhas mais velhas e frutos.

Análise da composição química dos óleos essenciais (CG/EM)

O material analisado constituiu de folhas frescas, das diferentes regiões do ramo e épocas de colheita. Primeiramente, foi feita a extração dos óleos essenciais através da hidrodestilação de cada tratamento, em aparelho de Clevenger, com 500g de folhas frescas, picadas manualmente, colocadas em balão de vidro de 2000mL e cobertas com água destilada, com tempo de extração de 3 horas.

Os óleos essenciais obtidos foram analisados através de CG/EM (Shimadzu, OP-5000), utilizando coluna capilar de sílica fundida DB-5 (J&W Scientific, 30 m x 0,25 mm i.d.x 0,25 μm de espessura do filme), tendo hélio como gás de arraste (1,7 mL/min) e temperaturas programadas de 50°C por 5 min; 190°C por 4°C/min e 190 -240°C (15°C/min); temperaturas de injetor e detector de 240°C e 230°C, respectivamente.

Os constituintes químicos foram identificados pela comparação dos espectros de massa e banco de dados do CG/EM (Nist, 59, Lib.), literatura e Indice de Retenção de Kovats (Adams, 1995).

RESULTADO E DISCUSSÃO

Na Tabela 1, são apresentadas as médias dos constituintes químicos dos óleos essenciais nas diferentes épocas de colheita, nas folhas da região apical do ramo, na qual se constata que os constituintes majoritários foram o citral (neral + geranial), t-cariofileno, β-elemeno, germacreno-D e β-mirceno. A porcentagem relativa do citral foi 35,43% na primeira colheita (verão/98) aumentando para 59,53% na última colheita (outono/99). O t-cariofileno, sesquiterpeno majoritário, atinge o máximo (13,04%) de sua porcentagem relativa no verão/98 (primeira colheita), a partir desta colheita decresce em proporções relativas atingindo 6,06% na colheita do verão/99. O β-elemeno e o terceiro constituinte majoritário com a maior porcentagem encontrada no inverno/98, e a menor no verão/99. O β-mirceno atingiu máxima porcentagem relativa na primavera/98 (10,32%) e mínima no inverno/98 (1,39%). Outro constituinte com proporção relativa alta foi o germacreno-D, que a partir do outono/98 até o verão/99, apresentou tendência de

TABELA 1 — Porcentagem média dos constituintes químicos dos óleos essenciais de diferentes épocas de colheita, das folhas na região apical do ramo de *Lippia alba*.

<table>
<thead>
<tr>
<th>Substância/Épocas</th>
<th>Verão 98</th>
<th>Outono 98</th>
<th>Inverno 98</th>
<th>Primavera 98</th>
<th>Verão 99</th>
<th>Outono 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metil-hepta-2-ona</td>
<td>6.61</td>
<td>2.19</td>
<td>1.65</td>
<td>2.03</td>
<td>3.25</td>
<td>0.56</td>
</tr>
<tr>
<td>β-mirceno</td>
<td>2.63</td>
<td>5.81</td>
<td>1.39</td>
<td>10.32</td>
<td>6.51</td>
<td>1.63</td>
</tr>
<tr>
<td>O-cimeno</td>
<td>3.27</td>
<td>3.24</td>
<td>0.72</td>
<td>0.75</td>
<td>0.48</td>
<td>0.74</td>
</tr>
<tr>
<td>3-ocetanol</td>
<td>1.02</td>
<td>0.44</td>
<td>0.10</td>
<td>---</td>
<td>0.33</td>
<td>---</td>
</tr>
<tr>
<td>Limoneno</td>
<td>1.06</td>
<td>2.70</td>
<td>0.01</td>
<td>1.07</td>
<td>1.23</td>
<td>6.07</td>
</tr>
<tr>
<td>Cicloheptadieno</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.31</td>
<td>2.29</td>
<td>0.51</td>
</tr>
<tr>
<td>Linalol</td>
<td>1.74</td>
<td>2.10</td>
<td>1.71</td>
<td>1.06</td>
<td>1.44</td>
<td>1.37</td>
</tr>
<tr>
<td>Nerol</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.66</td>
<td>---</td>
</tr>
<tr>
<td>Carvona</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>3.72</td>
<td>---</td>
</tr>
<tr>
<td>Neral</td>
<td>18.11</td>
<td>23.78</td>
<td>20.29</td>
<td>22.78</td>
<td>22.37</td>
<td>30.67</td>
</tr>
<tr>
<td>Geranial</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.57</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>β-elemenno</td>
<td>7.44</td>
<td>6.56</td>
<td>8.56</td>
<td>2.73</td>
<td>2.47</td>
<td>4.00</td>
</tr>
<tr>
<td>t-cariofileno</td>
<td>13.04</td>
<td>11.50</td>
<td>10.20</td>
<td>7.77</td>
<td>6.06</td>
<td>8.16</td>
</tr>
<tr>
<td>Alfa-humuleno</td>
<td>1.59</td>
<td>1.50</td>
<td>1.25</td>
<td>0.91</td>
<td>0.45</td>
<td>1.10</td>
</tr>
<tr>
<td>Germacreno-D</td>
<td>5.60</td>
<td>7.03</td>
<td>4.76</td>
<td>3.96</td>
<td>2.17</td>
<td>3.09</td>
</tr>
<tr>
<td>Alfa-bisaboleno</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1.50</td>
<td>0.81</td>
<td>---</td>
</tr>
<tr>
<td>Neraldo</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.44</td>
<td>0.87</td>
<td>3.11</td>
</tr>
</tbody>
</table>

substância não encontrada

Nesta tabela, encontram-se as médias dos constituintes químicos nas diferentes épocas de colheita das folhas da região mediana do ramo, onde se constatou que, também nesta região do ramo predominam as mesmas constituintes que na região apical. O t-cariofileno, é também o segundo constituinte mais abundante, o qual apresentou um ligeiro declínio no teor durante as colheitas passando de cerca de 11,00% nas duas primeiras colheitas (verão e outono/98) para 8,29% na última colheita (outono/99), mesmo assim, se caracteriza como o esquiverono majoritário durante toda a colheita nesta região do ramo. Já o β-elemenno atingiu o máximo de porcentagem relativa na colheita do verão/98 (6.27%), atingindo a menor porcentagem relativa na colheita do verão/99 (2.01%). A maior porcentagem relativa do β-mirceno (7,37%) ocorreu na colheita da primavera/98. O germacreno-D apresentou maior teor na colheita de outono/98 (5,56%) e menor na de verão/99 (1,89%). Interessante observar que as folhas, desta região apresentaram o zingibereno (Tabela 2) no verão/98 e outono/99 não sendo observado na região apical (Tabela 1).

TABELA 2 — Porcentagem média dos constituintes químicos dos óleos essenciais, nas diferentes épocas de colheita, das folhas na região mediana do ramo de *Lippia alba*.

<table>
<thead>
<tr>
<th>Substância/Épocas</th>
<th>Verão 98</th>
<th>Outono 98</th>
<th>Inverno 98</th>
<th>Primavera 98</th>
<th>Verão 99</th>
<th>Outono 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metil-hepta-2-ona</td>
<td>3.78</td>
<td>1.39</td>
<td>1.63</td>
<td>1.81</td>
<td>4.46</td>
<td>0.73</td>
</tr>
<tr>
<td>β-mirceno</td>
<td>2.49</td>
<td>3.21</td>
<td>3.85</td>
<td>7.37</td>
<td>6.20</td>
<td>2.68</td>
</tr>
<tr>
<td>O-cimeno</td>
<td>1.50</td>
<td>1.10</td>
<td>0.66</td>
<td>---</td>
<td>0.72</td>
<td>---</td>
</tr>
<tr>
<td>3-ocetanol</td>
<td>0.20</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.18</td>
</tr>
<tr>
<td>Limoneno</td>
<td>0.36</td>
<td>1.25</td>
<td>1.75</td>
<td>2.03</td>
<td>4.29</td>
<td>0.88</td>
</tr>
<tr>
<td>Cicloheptadieno</td>
<td>---</td>
<td>---</td>
<td>0.72</td>
<td>1.07</td>
<td>1.08</td>
<td>0.71</td>
</tr>
<tr>
<td>Linalol</td>
<td>1.80</td>
<td>1.83</td>
<td>1.53</td>
<td>1.21</td>
<td>1.41</td>
<td>1.10</td>
</tr>
<tr>
<td>Nerol</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.94</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Neral</td>
<td>23.34</td>
<td>29.31</td>
<td>28.15</td>
<td>24.11</td>
<td>26.43</td>
<td>28.80</td>
</tr>
<tr>
<td>Geranial</td>
<td>24.73</td>
<td>24.35</td>
<td>28.03</td>
<td>23.34</td>
<td>24.57</td>
<td>31.07</td>
</tr>
<tr>
<td>β-elemenno</td>
<td>6.27</td>
<td>5.55</td>
<td>2.30</td>
<td>3.19</td>
<td>2.01</td>
<td>3.55</td>
</tr>
<tr>
<td>t-cariofileno</td>
<td>11.10</td>
<td>11.88</td>
<td>8.65</td>
<td>7.69</td>
<td>6.14</td>
<td>8.29</td>
</tr>
<tr>
<td>Alfa-humuleno</td>
<td>1.29</td>
<td>1.39</td>
<td>0.94</td>
<td>0.96</td>
<td>0.51</td>
<td>0.75</td>
</tr>
<tr>
<td>Germacreno-D</td>
<td>4.26</td>
<td>5.56</td>
<td>2.79</td>
<td>3.23</td>
<td>1.89</td>
<td>3.14</td>
</tr>
<tr>
<td>Alfa-bisaboleno</td>
<td>1.32</td>
<td>---</td>
<td>---</td>
<td>0.56</td>
<td>0.56</td>
<td>1.43</td>
</tr>
<tr>
<td>Zingibereno</td>
<td>1.320</td>
<td>1.353</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Nerolidol</td>
<td>---</td>
<td>---</td>
<td>1.18</td>
<td>1.70</td>
<td>1.49</td>
<td>1.52</td>
</tr>
</tbody>
</table>

substância não encontrada
Na Tabela 3, são apresentadas as médias dos constituintes químicos das folhas nas diferentes épocas de colheita da região basal do ramo na qual o l-cariofileno é também o segundo constituinte químico do óleo essencial em porcentagem relativa, que apresenta variações durante as colheitas (12,13% para o verão/98 e 6,69% para o verão/99). O β-êlemeno, terceiro constituinte mais abundante, atingindo maior porcentagem relativa no outono/98 (7,47%). Nas folhas desta região do ramo, o β-mirceno, sendo comparada às outras regiões estudadas, atingiu o maior teor relativo somente no verão/99 (5,26%). O germacreno-D apresentou o mesmo comportamento que na região medianá, variando de 6,40% na colheita de outono/98 a 6,00% no do verão/99. A presença de carvona, somente foi detectada em duas épocas de colheita, no verão/99 (Tabela 1) e primavera/98 (Tabela 3), nas regiões apical e basal, respectivamente.

TABELA 3 - Porcentagem média dos constituintes químicos dos óleos essenciais, nas diferentes épocas de colheita, das folhas na região basal do ramo de Lippia alba.

<table>
<thead>
<tr>
<th>Substância</th>
<th>Verão</th>
<th>Outono</th>
<th>Inverno</th>
<th>Primavera</th>
<th>Verão</th>
<th>Outono</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>Metil-hept-2-ona</td>
<td>1,42</td>
<td>0,57</td>
<td>2,41</td>
<td>0,60</td>
<td>2,21</td>
<td>0,63</td>
</tr>
<tr>
<td>β-mirceno</td>
<td>1,42</td>
<td>2,15</td>
<td>3,74</td>
<td>3,66</td>
<td>5,26</td>
<td>2,86</td>
</tr>
<tr>
<td>o-cimeno</td>
<td>0,41</td>
<td>0,92</td>
<td>0,60</td>
<td>0,77</td>
<td>0,76</td>
<td>0,38</td>
</tr>
<tr>
<td>3-octanol</td>
<td>-----</td>
<td>-----</td>
<td>0,43</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Limoneno</td>
<td>0,41</td>
<td>1,00</td>
<td>1,47</td>
<td>1,31</td>
<td>1,61</td>
<td>1,99</td>
</tr>
<tr>
<td>Cicloheptadieno</td>
<td>-----</td>
<td>-----</td>
<td>0,34</td>
<td>0,45</td>
<td>0,93</td>
<td>0,52</td>
</tr>
<tr>
<td>Linalol</td>
<td>1,32</td>
<td>1,22</td>
<td>1,87</td>
<td>1,27</td>
<td>1,30</td>
<td>1,22</td>
</tr>
<tr>
<td>Nerol</td>
<td>-----</td>
<td>-----</td>
<td>1,35</td>
<td>-----</td>
<td>0,48</td>
<td>-----</td>
</tr>
<tr>
<td>Carvona</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>25,52</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Nerol</td>
<td>23,08</td>
<td>22,16</td>
<td>22,74</td>
<td>16,27</td>
<td>27,98</td>
<td>27,25</td>
</tr>
<tr>
<td>Geraniol</td>
<td>-----</td>
<td>-----</td>
<td>2,72</td>
<td>1,10</td>
<td>0,58</td>
<td>-----</td>
</tr>
<tr>
<td>Geranial</td>
<td>26,58</td>
<td>23,22</td>
<td>22,13</td>
<td>24,28</td>
<td>27,34</td>
<td>28,78</td>
</tr>
<tr>
<td>β-êlemeno</td>
<td>3,42</td>
<td>7,47</td>
<td>3,34</td>
<td>3,55</td>
<td>2,54</td>
<td>4,37</td>
</tr>
<tr>
<td>l-cariofileno</td>
<td>12,13</td>
<td>11,86</td>
<td>8,96</td>
<td>7,75</td>
<td>6,69</td>
<td>8,65</td>
</tr>
<tr>
<td>Alfa-humuleno</td>
<td>1,36</td>
<td>1,27</td>
<td>1,37</td>
<td>1,51</td>
<td>0,55</td>
<td>0,83</td>
</tr>
<tr>
<td>Germacreno-D</td>
<td>3,85</td>
<td>6,39</td>
<td>3,52</td>
<td>4,52</td>
<td>2,08</td>
<td>3,17</td>
</tr>
<tr>
<td>Zhengibérênio</td>
<td>1,36</td>
<td>1,61</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Alfa-bisaboleno</td>
<td>---</td>
<td>---</td>
<td>1,71</td>
<td>1,98</td>
<td>0,80</td>
<td>1,81</td>
</tr>
<tr>
<td>Nerolidol</td>
<td>---</td>
<td>---</td>
<td>2,97</td>
<td>2,82</td>
<td>1,72</td>
<td>2,94</td>
</tr>
</tbody>
</table>

substância não encontrada

A composição dos compostos secundários nas plantas é resultado do balanço entre sua formação e transformação que ocorrem durante o crescimento em decorrência principalmente de três fatores: genéticos, ambientais e técnicos culturais (Correa et al., 1994). Os resultados, apresentados nas Tabelas 1, 2 e 3, demonstram que o fator ambiental, sazonalidade, interferiu na porcentagem média dos constituintes químicos dos óleos essenciais.

Mattos et al. (1996) realizaram extração de óleo essencial das folhas de seis clones de Lippia alba, obtendo resultados semelhantes aos encontrados, onde nerál (27,18- 30,4%) e geranial (35,63- 40,95%) também foram os principais constituintes químicos de três clones, diferindo quanto a carvona que apresentou 42,30 e 54,69% nos clones restantes. Com base nessas resultados, houve a classificação de dois quimiotipos diferentes de Lippia alba.

Os resultados sugerem que tanto a constituição química como a porcentagem relativa dos óleos essenciais, foram alterados em função das diferentes regiões do ramo e diferentes épocas de colheita.

AGRADECIMENTO

Ao apoio financeiro da FAPESP.

REFERÊNCIA BIBLIOGRÁFICA

